Acta Crystallographica Section E

Structure Reports

Online
ISSN 1600-5368

N, N^{\prime}-Bis(pyridin-2-yl)benzene-1,4dicarboxamide

Ta-Pin Tsai, Hui-Lin Hsiao and Jhy-Der Chen*

Department of Chemistry, Chung-Yuan Christian University, Chung-Li, Taiwan Correspondence e-mail: jdchen@cycu.edu.tw

Received 6 December 2010; accepted 6 December 2010

Key indicators: single-crystal X-ray study; $T=298 \mathrm{~K}$; mean $\sigma(\mathrm{C}-\mathrm{C})=0.002 \AA$; R factor $=0.040 ; w R$ factor $=0.112$; data-to-parameter ratio $=16.2$.

Molecules of the title compound, $\mathrm{C}_{18} \mathrm{H}_{14} \mathrm{~N}_{4} \mathrm{O}_{2}$, are located around an inversion center and connected into chains in the crystal via intermolecular $\mathrm{N}-\mathrm{H} \cdots \mathrm{N}$ hydrogen bonds generating an $R_{2}^{2}(8)$ motif.

Related literature

For N, N^{\prime}-bis(pyridinyl) derivatives of 1,4-benzenedicarboxamide and their metal complexes, see: Tsai et al. (2010).

Experimental

Crystal data

$$
\begin{aligned}
& \mathrm{C}_{18} \mathrm{H}_{14} \mathrm{~N}_{4} \mathrm{O}_{2} \\
& M_{r}=318.33 \\
& \text { Triclinic, } P \overline{1} \\
& a=5.7895(4) \AA \\
& b=7.8315(6) \AA \\
& c=8.8460(5) \AA \\
& \alpha=82.906(6)^{\circ} \\
& \beta=74.083(5)^{\circ}
\end{aligned}
$$

Data collection

Siemens P4 diffractometer Absorption correction: ψ scan (XSCANS; Siemens, 1995)
$T_{\text {min }}=0.831, T_{\text {max }}=0.851$
1962 measured reflections
1787 independent reflections

Refinement

$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.040$
$w R\left(F^{2}\right)=0.112$
$S=1.06$
1787 reflections

1521 reflections with $I>2 \sigma(I)$ $R_{\text {int }}=0.013$
3 standard reflections every 97 reflections
intensity decay: none

Table 1
Hydrogen-bond geometry ($\AA{ }^{\circ}{ }^{\circ}$).

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{~N} 1-\mathrm{H} 1 A \cdots \mathrm{~N} 2^{\mathrm{i}}$	0.86	2.34	$3.1679(15)$	163

Symmetry code: (i) $-x+1,-y,-z+1$.

Data collection: XSCANS (Siemens, 1995); cell refinement: XSCANS; data reduction: XSCANS and SHELXTL (Sheldrick, 2008); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL.

We are grateful to the National Science Council of the Republic of China for support. This research was also supported by the project of the specific research fields in Chung-Yuan Christian University, Taiwan, under grant No. CYCU-98-CR-CH.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: GK2331).

References

Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
Siemens (1995). XSCANS. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.
Tsai, T.-P., Huang, Y.-T., Ray, U., Chang, Y.-J., Cheng, P.-C., Wu, C.-J., Chen, J.-D. \& Wang, J. C. (2010). Polyhedron, pp. 3081-3088.

supplementary materials

Acta Cryst. (2011). E67, o63 [doi:10.1107/S1600536810051172]

N, N^{\prime}-Bis(pyridin-2-yl)benzene-1,4-dicarboxamide

T.-P. Tsai, H.-L. Hsiao and J.-D. Chen

Comment

Several $\mathrm{Cu}(\mathrm{II}), \mathrm{Cd}(\mathrm{II})$ and $\mathrm{Hg}(\mathrm{II})$ complexes containg N, N^{\prime}-bis(2/3-aryl)-1,4-benzenedicarboxamide ligands have been reported, which show one-dimensional and two-dimensional structures (Tsai, et al., 2010). Within this project the crystal structure of the title compound was determined.

In its crystal structure intermolecular $\mathrm{N}-\mathrm{H} \cdots \mathrm{N}$ hydrogen bonds are found (Tab. 1) and the molecule is located on a center of inversion (Fig. 1).

Experimental

The title compound was prepared according to a published procedure (Tsai, et al., 2010). Block crystals suitable for X-ray crystallography were obtained by slow evaporization of the solvent from a solution of the title compound in methanol.

Refinement

All the hydrogen atoms were placed into idealized positions and refined in the riding atom approximation with $C-\mathrm{H}=0.93$ $\AA, \mathrm{N}-\mathrm{H}=0.86 \AA$ and $U_{\mathrm{iso}}(\mathrm{H})=1.2 U_{\mathrm{eq}}(\mathrm{C}, \mathrm{N})$.

Figures

Fig. 1. Crystal structure of the title compound with atom labeling and displacement ellipsoids drawn at the 30% probability level. Symmetry code: $(i)=-x+2,-y,-z$.

N, N^{1}-Bis(pyridin-2-yl)benzene-1,4-dicarboxamide

Crystal data	
$\mathrm{C}_{18} \mathrm{H}_{14} \mathrm{~N}_{4} \mathrm{O}_{2}$	$Z=1$
$M_{r}=318.33$	$F(000)=166$
Triclinic, $P \overline{\mathrm{~T}}$	$D_{\mathrm{x}}=1.430 \mathrm{Mg} \mathrm{m}^{-3}$
Hall symbol: -P 1	Mo Ka radiation, $\lambda=0.71073 \AA$
$a=5.7895(4) \AA$	Cell parameters from 50 reflections
$b=7.8315(6) \AA$	$\theta=4.8-15.0^{\circ}$
$c=8.8460(5) \AA$	$\mu=0.10 \mathrm{~mm}^{-1}$
$\alpha=82.906(6)^{\circ}$	$T=298 \mathrm{~K}$
$\beta=74.083(5)^{\circ}$	Block, pale yellow
$\gamma=73.695(6)^{\circ}$	$0.60 \times 0.60 \times 0.56 \mathrm{~mm}$

supplementary materials

$V=369.72(4) \AA^{3}$

Data collection

Bruker P4

diffractometer
Radiation source: fine-focus sealed tube graphite
ω scans
Absorption correction: ψ scan
(XSCANS; Siemens, 1995)
$T_{\text {min }}=0.831, T_{\text {max }}=0.851$
1962 measured reflections
1787 independent reflections

1521 reflections with $I>2 \sigma(I)$
$R_{\text {int }}=0.013$
$\theta_{\max }=28.0^{\circ}, \theta_{\min }=2.4^{\circ}$
$h=0 \rightarrow 7$
$k=-9 \rightarrow 10$
$l=-11 \rightarrow 11$
3 standard reflections every 97 reflections intensity decay: none

Refinement

Refinement on F^{2}

Least-squares matrix: full
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.040$
$w R\left(F^{2}\right)=0.112$
$S=1.06$
1787 reflections
110 parameters

0 restraints
Primary atom site location: structure-invariant direct methods

Secondary atom site location: difference Fourier map
Hydrogen site location: inferred from neighbouring sites

H -atom parameters constrained
$w=1 /\left[\sigma^{2}\left(F_{\mathrm{o}}{ }^{2}\right)+(0.0468 P)^{2}+0.1049 P\right]$
where $P=\left(F_{\mathrm{o}}^{2}+2 F_{\mathrm{c}}^{2}\right) / 3$
$(\Delta / \sigma)_{\max }<0.001$
$\Delta \rho_{\max }=0.32 \mathrm{e} \AA^{-3}$
$\Delta \rho_{\min }=-0.19 \mathrm{e} \AA^{-3}$
Extinction correction: SHELXL97 (Sheldrick, 2008),
$\mathrm{Fc}^{*}=\mathrm{kFc}\left[1+0.001 \mathrm{xFc}^{2} \lambda^{3} / \sin (2 \theta)\right]^{-1 / 4}$

Extinction coefficient: 0.193 (17)

Special details

Experimental. Refinement of F^{2} against ALL reflections. The weighted R-factor $w R$ and goodness of fit S are based on F^{2}, conventional R-factors R are based on F, with F set to zero for negative F^{2}. The threshold expression of $F^{2}>\sigma\left(F^{2}\right)$ is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F^{2} are statistically about twice as large as those based on F, and R - factors based on ALL data will be even larger.
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two 1.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving 1.s. planes.
Refinement. Refinement of F^{2} against ALL reflections. The weighted R-factor $w R$ and goodness of fit S are based on F^{2}, conventional R-factors R are based on F, with F set to zero for negative F^{2}. The threshold expression of $F^{2}>\sigma\left(F^{2}\right)$ is used only for calculating R factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F^{2} are statistically about twice as large as those based on F, and R - factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (A^{2})

	x	y	z	$U_{\text {iso }}{ }^{*} U_{\text {eq }}$
O	$1.1101(2)$	$0.21659(16)$	$0.30550(13)$	$0.0497(3)$
N1	$0.7461(2)$	$0.13586(16)$	$0.41052(13)$	$0.0369(3)$
H1A	0.6695	0.0611	0.3982	0.044^{*}
N2	$0.4263(2)$	$0.20173(15)$	$0.63054(13)$	$0.0353(3)$
C1	$0.6435(2)$	$0.23152(17)$	$0.54787(14)$	$0.0316(3)$
C2	$0.7512(3)$	$0.35023(19)$	$0.59089(16)$	$0.0393(3)$
H2B	0.9066	0.3632	0.5336	0.047^{*}
C3	$0.6200(3)$	$0.4479(2)$	$0.72110(18)$	$0.0434(4)$
H3A	0.6853	0.5296	0.7523	0.052^{*}
C4	$0.3907(3)$	$0.42384(19)$	$0.80528(17)$	$0.0422(3)$
H4A	0.2982	0.4900	0.8924	0.051^{*}
C5	$0.3035(3)$	$0.29915(19)$	$0.75631(16)$	$0.0381(3)$
H5A	0.1507	0.2816	0.8138	0.046^{*}
C6	$0.9524(2)$	$0.14708(17)$	$0.29436(15)$	$0.0322(3)$
C7	$0.9716(2)$	$0.06764(16)$	$0.14401(14)$	$0.0290(3)$
C8	$1.2030(2)$	$-0.03051(17)$	$0.06322(14)$	$0.0314(3)$
H8A	1.3391	-0.0509	0.1057	0.038^{*}
C9	$1.2324(2)$	$-0.09833(17)$	$-0.08032(15)$	$0.0321(3)$
H9A	1.3876	-0.1641	-0.1340	0.039^{*}

Atomic displacement parameters $\left(A^{2}\right)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
O	$0.0418(6)$	$0.0697(7)$	$0.0464(6)$	$-0.0318(5)$	$-0.0005(5)$	$-0.0194(5)$
N 1	$0.0417(6)$	$0.0460(6)$	$0.0291(5)$	$-0.0261(5)$	$-0.0008(5)$	$-0.0092(5)$
N 2	$0.0366(6)$	$0.0411(6)$	$0.0302(5)$	$-0.0166(5)$	$-0.0041(4)$	$-0.0045(4)$
C 1	$0.0368(6)$	$0.0353(6)$	$0.0256(6)$	$-0.0148(5)$	$-0.0065(5)$	$-0.0023(5)$
C 2	$0.0426(7)$	$0.0445(8)$	$0.0364(7)$	$-0.0224(6)$	$-0.0055(6)$	$-0.0067(6)$
C 3	$0.0532(9)$	$0.0383(7)$	$0.0443(8)$	$-0.0182(6)$	$-0.0115(7)$	$-0.0100(6)$
C 4	$0.0491(8)$	$0.0360(7)$	$0.0382(7)$	$-0.0074(6)$	$-0.0055(6)$	$-0.0110(5)$
C 5	$0.0360(7)$	$0.0401(7)$	$0.0353(7)$	$-0.0101(6)$	$-0.0029(5)$	$-0.0041(5)$
C 6	$0.0332(6)$	$0.0359(6)$	$0.0298(6)$	$-0.0144(5)$	$-0.0052(5)$	$-0.0039(5)$
C 7	$0.0300(6)$	$0.0323(6)$	$0.0259(6)$	$-0.0139(5)$	$-0.0030(4)$	$-0.0015(4)$
C 8	$0.0267(6)$	$0.0384(7)$	$0.0308(6)$	$-0.0119(5)$	$-0.0068(5)$	$-0.0011(5)$
C 9	$0.0263(6)$	$0.0359(6)$	$0.0320(6)$	$-0.0084(5)$	$-0.0020(5)$	$-0.0057(5)$

Geometric parameters ($\AA,{ }^{\circ}$)

$\mathrm{O}-\mathrm{C} 6$	$1.2169(16)$	$\mathrm{C} 4-\mathrm{C} 5$	$1.377(2)$
$\mathrm{N} 1-\mathrm{C} 6$	$1.3614(16)$	$\mathrm{C} 4-\mathrm{H} 4 \mathrm{~A}$	0.9300
$\mathrm{~N} 1-\mathrm{C} 1$	$1.4034(16)$	$\mathrm{C} 5-\mathrm{H} 5 \mathrm{~A}$	0.9300
$\mathrm{~N} 1-\mathrm{H} 1 \mathrm{~A}$	0.8600	$\mathrm{C} 6-\mathrm{C} 7$	$1.5009(17)$
$\mathrm{N} 2-\mathrm{C} 1$	$1.3375(17)$	$\mathrm{C} 7-\mathrm{C} 8$	$1.3888(17)$
$\mathrm{N} 2-\mathrm{C} 5$	$1.3403(17)$	$\mathrm{C} 7-\mathrm{C} 9$	$1.3936(17)$

supplementary materials

C1-C2	1.3932 (18)	C8-C9	1.3860 (17)
C2-C3	1.378 (2)	C8-H8A	0.9300
C2-H2B	0.9300	$\mathrm{C} 9-\mathrm{C} 7{ }^{\text {i }}$	1.3936 (17)
C3-C4	1.384 (2)	C9-H9A	0.9300
C3-H3A	0.9300		
C6-N1-C1	127.85 (11)	N2-C5-C4	123.77 (13)
C6-N1-H1A	116.1	N2-C5-H5A	118.1
C1-N1-H1A	116.1	C4-C5-H5A	118.1
C1-N2-C5	117.11 (11)	O-C6-N1	124.94 (12)
N2-C1-C2	123.38 (12)	O-C6-C7	120.89 (11)
N2-C1-N1	112.88 (11)	N1-C6-C7	114.16 (11)
$\mathrm{C} 2-\mathrm{C} 1-\mathrm{N} 1$	123.70 (12)	C8-C7-C9 ${ }^{\text {i }}$	119.81 (11)
C3-C2-C1	117.84 (13)	C8-C7-C6	118.37 (11)
C3-C2-H2B	121.1	C9 ${ }^{\text {i }}$ - 7 - 76	121.72 (11)
C1-C2-H2B	121.1	C9-C8-C7	120.42 (12)
C2-C3-C4	119.75 (13)	C9-C8-H8A	119.8
$\mathrm{C} 2-\mathrm{C} 3-\mathrm{H} 3 \mathrm{~A}$	120.1	C7-C8-H8A	119.8
C4-C3-H3A	120.1	C8-C9-C7 ${ }^{\text {i }}$	119.77 (11)
C5-C4-C3	118.06 (13)	C8-C9-H9A	120.1
C5-C4-H4A	121.0	C7- ${ }^{\text {i }}$ - 9 - H 9 A	120.1
C3-C4-H4A	121.0		
Symmetry codes			

Hydrogen-bond geometry ($\AA,^{\circ}$)

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{~N} 1 — \mathrm{H} 1 \mathrm{~A} \cdots \mathrm{~N} 2 \mathrm{~A}^{\mathrm{ii}}$	0.86	2.34	$3.1679(15)$	163

Symmetry codes: (ii) $-x+1,-y,-z+1$.

supplementary materials

Fig. 1

